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CHAPTER  2 

CONTRIBUTIONS TO THE STUDY CASIMIR EFFECT BASED 

ON NONLINEAR DYNAMICS ELEMENTS 

 

2.1 Navier-Stokes equations in Scale Relativity Theory 

 For viscous compressible fluids, Navier-Stokes equations  
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together with the equation of continuity  

0 v


Dt

D
,     (2.26) 

where  is the density, v the velocity of the fluid, X the body force, p the 

pressure,  the shear viscosity and  vdtdDtD  the Eulerian 

derivative, apply to Newtonian fluids. Substituting the operator d/dt with of 

the fractal dtd̂  and separating the real and imaginary parts, in a stationary 

isotropic case, taking the body force X = 0  and U = 0 become:  

2 2

2

      V 0

0              0 

p
         



      

D

D  

V V V U V

V V U

  (2.27a,b 2.28 a,b) 

where 


V V - iU  is the complex velocity (we have identified the real 

velocity V with v, the instantaneous velocity of the particle)  = / the 

kinematic viscosity and D =ħ/2m defines the amplitude of the fractal 

fluctuations. 



If we compare it with Navier-Stokes equation (2.27a), where there 

are no pressure gradients, we can see the first term of (2.27b) gives the rate 

at which V is transported through a 'fluid' by means of the motion of 'fluid' 

particles with the velocity U; the second term gives the diffusion of V, but 

D  plays the role of the “cinematic viscosity” of the “fluid”. If we consider 

the flow of V induced by a uniform translation motion of a plane spaced a 

distance Y above a stationary parallel plane, and if the 'fluid' velocity 

increases from zero (at the stationary plane) to U (at the moving plane) like 

in the case of simple Couette flow, or simple shear flow, then 

Y

U

dy

dV
n deformatioshear  of rate . 

When such 'fluids' flow, it have found at reasonable speeds, the 

viscous effects appear only in thin layers on the surface of objects or 

surfaces over which the 'fluid' flows. That is, if one continues the analogy, 

and questions how is V transported by the motion of 'fluid' particles with 

the velocity U, in equation (2.27 b), one can assume that the mechanism of 

transfer of V from one particle of 'fluid' to another is achieved over small 

distances (in thin layers, as stated above). 

We study an important case, of the one-dimensional flow along the 

Ox axis   kV  x . Consequently, (2.27 b) reduces to the scalar equation 

      02  xxKx   



which is the time independent Schrödinger equation. In this equation 
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with  and D  having the significance of a small 

elementary distance and of the 'cinematic viscosity' (or amplitude of the 

fractal fluctuations), respectively, and U(x) is the velocity of the 

“Newtonian fluid” [38].   

For D = ħ/2m and small distances of the order of Compton length, 

 = ħ/mc [39], equation (2.33) is solved using the WKBJ approximation 

method [40-42]. We obtained for different shapes of functions and 

quantization conditions, and we demonstrated that if the “potential” well 

have both walls infinitely steep, like is the case in the Casimir geometry, 

the quantization rule is given [40-42] 
2
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number and 1,2,3,...n    

2.2 Casimir Type Force in Scale Relativity Theory 

The Casimir effect are described by quantum field theories, 

considering that all of the various fundamental fields, and in particular, the 

electromagnetic field, must be quantized at each and every point in space.  

 In our model, let us consider the vacuum, as a non-differentiable, 

Newtonian, 2D non-coherent quantum fluid whose entities (quasi-particles) 



assimilated to vortex-type objects [43] (see Fig. 2.3) described by the wave 

function  [44,45]  kucn ;  with 
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and K, K’ complete elliptic integrals of the first kind of modulus k [46], 

form a vortex lattice of constants a, b. Applying in the complex plane [47], 

the formalism developed in [38] by means of the relation 

   kucne zF ;   one introduces the complex potential 

        kucnyxiHyxGzF ;ln,,     (2.38) 

with Γ the vortex constant. In our case Γ = c = ħ/m [43-45], with  

Compton length, the interaction scale being specified through Γ ’s value. 

Based on the complex potential (2.38), one defines the complex 

velocity field of the non-coherent quantum fluid, through the relation 
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Having in view that    ucnucn  , where KniKm  2)12(2 and 

m,n = 1, 2 ..., for k  0 and k’  1 limits, respectively, the quantum 



fluid, initially non-coherent (the amplitudes and phases of quantum fluid 

entities are independent) becomes coherent (the amplitudes and phases of 

quantum fluid entities are correlated [49]). In such a context, the 

distribution curves of the equipotential curves give in Fig. 2.4 a,b , for k
2
 

0 şi  k
2
 1, it results that the coherence of the quantum fluid reduces to its 

ordering in vortex streets. 

 Now, writing the Navier-Stokes equation (2.27a) and the equation 

of continuity (2.28a) in scale relativity theory for constant density 

(incompressible fluids) in two dimensions, one gets 
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where the shear viscosity  is replaced by D since we are dealing here 

with a non-differentiable quantum fluid. In other words, non-

differentiability and coherence of the quantum fluid due to constraints, 

generate pressure along the Ox and Oy axis. 



Let us study the case of a Casimir cavity, rectangular plates with 

sides d1, d. The plates induce constraints along both Ox and Oy axis, so 

that the vortex streets are formed along these directions. Mathematical, 

operate simultaneously degenerations of the potential cn(u). It follows that 

every point (x, y) there is a pressure formed of the two constraints, pressure 

acting on the sides of the rectangular enclosure: 
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Plots of (2.56) for various values of parameters m, n = 1, 2, .... and 

r are depicted in Fig. 2.5a,b. One can notice that if the two parameters m 

and n have close values, the force acting on the Casimir rectangle is always 

negative and decreases exponentially for increasing r. For parameters m 

and n (1,5 and 5,1, very asymmetric) the force has negative and positive 

domains (see Fig. 2.5b) and increases exponentially for increasing r 

(Figure 2.5 b). Moreover, the positive and negative domains are obtained 



by solving (2.56) for m = 5, n = 5 finds prect < 0 for 0.45753  r  2.18565 

and prect  > 0 for r  > 2.18565 and r < 0.45753. This result is in agreement 

with the calculus of regularization using the Abel-Plana formula where E < 

0 for 0.36537  L/l  2.73686 and E  > 0 for L/l  > 2.73686 and L/l < 

0.36537 [52]. 

  

CHAPTER 3 

ATOMIC MODELS USING NONLINEAR DYNAMICS  

 

3.1 The unified model of the atom using fractal approximation of  

motion 

3.1.1 Excited states of atoms  

Let us consider the interaction of a beam of charged particles with a 

combined field (monochromatic electromagnetic field and  constant 

external magnetic field). The mathematical model of this dynamical system 

is based, according to [66-68] on Maxwell equations and relativistic 

equation of motion for a single particle of the beam. 

To obtain the values of parameters which define an efficient 

mechanism of acceleration (gun effect), we consider that the motion of a 

single particle of the beam occurs in the electromagnetic field generated by 

the remaining particles of the beam. Thus the initial system with a self 

consistent field is transformed in a system with external fields. In these 

conditions, we will consider the motion of a charged particle in a constant 



external magnetic field and in the presence of a transversal electromagnetic 

field. 

We obtain the following dimensionless equations which describe 

the nonlinear dynamics of the model [66-68]: 
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significance of parameters are given in thesis. 

Analytical solutions for the system (3.82) are difficult to obtain. 

This is why we shall numerically integrate them. The numerical solutions 

of these equations and their correspondences with the dynamics of the 

system have been obtained by applying the fifth-order Runge-Kutta 

algorithm with an adaptive step error [66-68].  

3.1.1.2 Lyapunov exponents 

In Figure 3.5 analyzes the chaotic zones by calculating the 

Lyapunov exponents. The darker areas represent the zones with higher 

Lyapunov exponent, i.e. the chaotic zones. We can thus confirm the fact 

that in order to obtain extensive chaotic regimes we must have 2.5H  . 

Thus, there are three distinct chaotic “islands” (1 for 2.5H  respectively 2 

and 3 for 4 5H  ).  

 3.1.1.3 The time series, Poincaré sections,  the phase space  



It is difficult to directly observe an evolution towards chaos 

because the form of circular trajectories does not change significantly (only 

in certain specific cases the particle returns). We present the particle 

behavior in the combined field using Lyapunov diagram given in Figure 

3.5. Distinguish the following sequences: 

i) For small amplitudes of the electromagnetic field, e.g. 0.05H  , the 

particle motion is complex but retains a regular character (see Figs. 3.11 a-

g see thesis).  

ii) The onset of fractalisation (by means of stochasticity) is observed once 

H exceeds 0.5  (see Figs. 3.12 a-g, see thesis).  

iii) When 1.5H  , a gun effect is initiated (see Figs. 3.13 a-g, see thesis).  

iv) An extensive chaotic regime is obtained for 2.5H  (see Figs.3.14, a-g 

see thesis).  

v) A chaotic gun effect erupts for 3.5H  (see Figs. 3.15 a-g, see thesis).  

vi) A multi-gun effect results for 4.5H   (see Figs. 3.16 a-g, see thesis).  

 Each sequence was characterized by time series  ,X T , 

 ,xP T ,  ,yP T , Poincaré section  ,x yP P  and phase space  , xX P , 

 , yX P ,  , ,x yX P P .  

3.1.1.4 Bifurcation diagrams    

The bifurcation diagrams confirm this scenario of transition to 

chaos resonances overlapping (see Figs. 17).   

Partially chaotic zones are zones which points vertical distribution 

is chaotic transition zones. Transition to chaotic areas is not achieved 

through successive bifurcations but by resonances overlapping. 



The model can describe the transitional stationary states of the atom 

accepting that "dynamics" system charged particle-combined 

electromagnetic field can be treated as "dynamics" electron-nucleus 

system. 

3.1.2 Stationary orbits of the atom  

Previous analysis states that electrons move around the nucleus takes 

place on fractal curves. This it may apply relativity formalism [71-76].  For the 

irotational movements in the external scalar field it results the hydrodynamic 

fractal system  
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with Q  the fractal potential 
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The presence of the scalar potential of the complex speed field implies by 

irotational movements the followings: 

i) at differentiable scale, the real speed field is responsible for the stationary orbits 
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ii) at non-differentiable scale, the fractal speed field (the imaginary part of the 

complex speed field) is responsible for the fractal potential  
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This result was obtained by means of the recurrence relation for the associated 

Laguerre and Legendre polynomials [10, 11]. The fractal potential leads to the 

observable energy of the system  
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where a is the range of the first Bohr orbit  

 

 CHAPTER 4 

USING NONLINEAR DYNAMICS IN THE STUDY OF 

INTERACTIONS ON A MICROSCOPIC SCALE 

  

4.1 Transport equation 

Considering the complexity of drug release processes from the 

matrix polymer is substituted by fractals, using the [104], we obtain the 

transport equation for a quantity Q in the form  
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where 


V is complex speed field. This means that at any point of a fractal 

path, the local temporal  Qt , the non-linearly, Q











V , the dissipation, 

Q , and the dispersion, Q3 , make their balance.  



4.2. The dissipative approximation in the drug release procces.  

4.2.1 The generalized diffusion equation  

The dynamics of the fractal released drug concentration field at 

both mesoscopic and nano scale are described by the equation [105]: 
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The diffusion equation generalized results from (4.59) imposing the 

following restrictions: 

i) the “diffusion” path are fractal curves with fractal dimension 2DF  ; 

ii) the time resolution, δt, is identified with the differential element dt, i.e. 

the substitution principle can be applied; 

iii) the movements at differentiable and non-differentiable scales are 

“synchronous”  

(the same drug release mechanisms at fractal scale manifests, also, at 

differentiable scale), i.e. UV  . 

Then, the equation (4.59) can be written   
Qdt

t

Q 1D2 F 






D , 

which we call the generalized diffusion equation. Considering that the 

relative variation of released drug concentrations, time dependent, is 

defined as [105]:  ( )T t Q Q Q   , where Q  and Q  are cumulative 

concentrations of drug released at time t and respectively, infinite time 

[105], satisfy the generalized diffusion equation using separating variables 

method [105], resulting formula  
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Here, with the substitutions 
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Weibull’s is obtained   

 )exp(1 bat
Q

Q




    (4.69) 

Constant b depends only on the dimension fractal "curves" on 

which drug release mechanism take place, while constant a depends both 

on the fractal dimension and diffusion order m. 

 For different values of a and/or b parameters, the following cases 

can be distinguished. 

i)    For b=1, that implies 2
F

D  . Also, this condition implies the 

next considerations:  

- the diffusion paths are the fractal curves of Peano’s type (DF = 2). 

- the movements at differentiable and non-differentiable scales are 

synchronous,  UV  ; 

- the structure coefficient D  is identified with the diffusion coefficient, i.e. 

DD . 



ii) If in the relation (4.69) we consider the restriction on time bat 1  , with 

1a , this can be reduced to a well-known law in drug release studies, the 

Peppas law. 

4.2.2 Validation of theoretical model based on experimental results 

Gelatin and poly(vinyl alcohol) (GEL-PVA) micro-particles cross-

linked with glutaraldehide (GA), for samples prepared by using different 

amount of cross-linking agent ( 2%, 6%, 8%, 10% - the sample code 

indicate the cross-linking amount: for example, GA2 represents a sample 

with 2% cross-linking amount), loaded with chloramphenicol, were studied  

[118].  

We analyzed these results fitting the experimental data with a 

Weibull type law, demonstrated in the above paragraph. As a result, we 

obtained parameters a and b, the correlation factors and release kinetics 

fractal dimension for each of the samples that indicates some information 

on the drug release mechanisms at mesoscopic scale (see Table 4.2). 

The first observation is that the correlation coefficient between the 

experimental curves and Weibull fitted curve are very good, better that 

than for Peppas curve, this allowing us to affirm that this entire release 

process can be described better by the Weibull type law instead of Peppas 

law, showing the wide applicability of a Weibull type law.  

4.3 The dispersive approximation of motion in drug release processes 

4.3.1 The generalized diffusion equation 



 In dispersive case, (4.55) take the form of generalized diffusion 

equation: 
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Assuming that QUV    with constant   [108], in the one-

dimensional case and introducing a dimensionless coordinate system, 

equation (4.77) take the standard form of the Korteweg de Vries equation 

6 0           (4.80) 

A stationary solution of equation (4.80) has the expression  
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 where cn is the Jacobi’s elliptic function of s modulus [109], a  is an 

amplitude, 0  
 is a constant of integration and 
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are the complete elliptic integrals [109]. As a result, the drug particle 

movement is achieved by one-dimensional cnoidal oscillation modes of the 

concentration field ( Figure 4.9).  

4.3.2 Experimental results 



4.3.2.1 The preparation protocol 

Most of the experimental data presented in literature reveals that, in 

general, the drug release from polymeric matrixes takes place in 

accordance to a power law in the first 60% of the release curve and/or to 

exponential Weibull law on the entire drug release curve, reaching an 

average constant equilibrium value. These results are, generally, for 

experiments carried out on relatively short time intervals, for which the 

dominant phenomena are disolution and diffusion, the system exhibiting a 

„burst effect” due to the high concentration gradient, followed by a linear 

evolution, on a constant value, corresponding to the equilibrium state with 

no concentration gradient.  

But, some experimental results, caried out on time intervals long 

enough so that the process to evolve completely, including the polymer 

degradation stage, shows unsual behaviours, with strong fluctuations. 

4.3.2.2 Levofloxacin release kinetics  

The release of levofloxacin loaded in the above described micro-

particles are plotted in Figure 4.10. The plots are grouped after the variable 

preparation parameter.  

All these experiments were caried out on 28 days, the concentration 

of the released drug being measured daily, at the same hour. The general 

characteristic of the above kinetics are the strong variations of 

concentration in time.  



We must point out that if these experiments would have take place at 

time scales of hours order, the system behaviours would have followed the 

well-known exponential Weibull law, analyzed in [96]. The corresponding 

release kinetics can be observed in Figure 4.11. 

4.3.3 Validation of theoretical model based on experimental 

results 

In the following, we identify the field Φ with the normalized 

concentration field of the released drug from micro-particles. In such 

context, it results that the drug release mechanism is accomplished by 

means of cnoidal oscillation modes of the normalized concentration field, 

the parameter s representing a measure of the system nonlinearity degree. 

So, the one-dimensional cnoidal oscillation modes contain as subsequences 

for 0s   the one-dimensional harmonic waves, while for 0s   the one-

dimensional waves packet. These two subsequences define the non-quasi-

autonomous regime of the drug release process. For 1s  , the solution 

(4.83) becomes a one-dimensional soliton, while for 1s   the one-

dimensional solitons packet results. These last two subsequences imply the 

quasi-autonomous regime for drug particle release process. 

To find the best correlation between the experimental data and the 

theoretical model, for each sample, we used a planar intersection of the 

graph in Fig. 4.9, where the two variables are 2y u /    si x s . With 

these variables equation  (4.83) becames: 



  
 
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  
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Thus, in order to find the one-dimensional equation for a planar 

intersection, perpendicular  to plane xOy , we used y m x n  , equation 

of a linear function, where m  and n  are two parameters. After 

substitutions we obtain an one-dimensional function:  

  2 1
2 21 1

t t
t ,m,n ,n m

m m

 
  

  
                 (4.87) 

 It results a good agreement between our experimental data and 

theoretical model. 

 

CONCLUSIONS 

 

The main original results of this thesis are: 

Chapter 2 

In this chapter we analyzed vacuum from the Casimir cavity, 

considered a non-differentiable, Newtonian, 2D non-coherent quantum 

fluid, by writing the Navier-Stokes equations in scale relativity theory’s 

framework. As a result the following results may be extracted : 

i) the (vector) velocity field V and/or the (scalar) density field  behave 

like a wave function on small distances (the same magnitude as the 

Compton length); 



ii) the (vector) velocity field V and/or the (scalar) density field  are 

transported by the motion of the Newtonian fluid with speed U, on small 

distances (the same magnitude as the Compton length). 

iii) the entities assimilated to vortex-type objects from the Casimir cavity, 

initially non-coherent, become coherent due to constraints induced by the 

presence of walls and generate pressure along the Ox and Oy axis . 

iv) It observe that, in the case, of the Casimir cavity from inside a 

rectangular enclosure of sides d1, d, the plates induce constraints along 

both Ox and Oy axis, and one can notice that if the two parameters m and n 

have close values, the force acting on the Casimir rectangle is always 

negative and for parameters m and n very asymmetric the force has 

negative and positive domains, in agreement with the calculus of 

regularization using the Abel-Plana formula. 

Chapter 3 

-  a complete and detailed nonlinear dynamics analysis (complete time series, 

Poincaré sections, complete phase space, Lyapunov exponents, bifurcation 

diagrams, fractal analysis) for a particle-field (electromagnetic field and static 

magnetic field) nonlinear interaction are analyzed; 

-  physical mechanisms (gun, chaotic gun and multi-gun effects) which explain 

the excited states of the atom (classical analogue of quantum absorption) were 

proposed; 

- the fractal analysis of the trajectories resulting from the particle-field nonlinear 

interaction shows that these curves posses the property of continuity and non-

differentiability, i.e. they are fractal curves. In such a context, we were able to 

apply the scale relativity theory for the study of the stationary states of the atom. 

Therefore, the trajectory fractalisation represents a natural mechanism of 



introducing quantification (real part of the complex speed field "select" stationary 

orbits, while the imaginary part quantifies energy). 

Chapter 4 

i) on small time scales, we analyzed the experimental results and it is 

observed that drug release kinetics type corresponds to a Weibull’s law. As 

a result, we obtained the parameters a and b, coefficients of correlation and 

fractal dimension of release kinetics for each of the samples, all showing 

some information on dispensing mechanisms mesoscopic or nano scale; 

 - Values for the correlation coefficient and the experimental curves for the 

curve described by Weibull are very good. This allows us to say that the 

whole release process can be described well by a Weibull law than one 

type Peppas, which leads to large-scale application of a law type Weibull; 

ii) on large time scale, we obtained a new model for the mechanism of drug 

release from polymer matrices considering that the drug particles motion 

take place on fractal curves  

- This model provides a new alternative for the theoretical study of the 

drug release process, when all phenomena are present, so the complexity of 

the system, and implicitly, nonlinearity becomes very high. 

- It follows that the normalized concentration field, while during the 

dependence of normalized and systemic nonlinearity (with parameter s). 

The best values of correlation factors were found, particular plans to the 

three-dimensional plot of normalized concentration field, indicates that to 

each state of the system, at a certain moment, corresponds a specific non-

linearity, determined by the intrinsic structure of the system. 
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